Thinking ahead and analyzing problems
WHAT'S THE FIRST STEP?

Match each problem to the first step you would take to solve it:

**PROBLEM**

1. Factor: \( x^2 - 7x + 10 \)

2. Find the \( x \)-intercepts of \( y = x^2 - 7x + 10 \)

3. What are the roots of \( y = (x - 5)(x - 2) \)?

4. Solve for \( x \):
   \[ x^2 - 7x = -10 \]

5. \((5, 0)\) and \((2, 0)\) are the \( x \)-intercepts of the parabola \( y = x^2 - 7x + 10 \). What is the vertex?

6. Factor completely: \( 3x^2 - 9x - 12 \)

**FIRST STEP**

1. \( 0 = (x - 5)(x - 2) \)

2. \( y = x^2 - 7x + 10 \)

3. \( x^2 - 7x = -10 \)
   \[ +10 \quad +10 \]
   \[ \frac{5 + 2}{2} = 3.5 \]

4. \( 0 = x^2 - 7x + 10 \)

5. \[ x \]

6. \[ x \]

7. \[ x \]

8. \[ x \]

9. \[ x = \frac{9 \pm \sqrt{(-9)^2 - 4(3)(-12)}}{2(3)} \]
Thinking ahead and analyzing problems
WHAT'S THE FIRST STEP?

Match each problem to the first step you would take to solve it:

**PROBLEM**

1. Factor: \( x^2 - 7x + 10 \)
2. Find the \( x \)-intercepts of \( y = x^2 - 7x + 10 \)
3. What are the roots of \( y = (x - 5)(x - 2) \)?
4. Solve for \( x \):
   \[ x^2 - 7x = -10 \]
5. \( (5, 0) \) and \( (2, 0) \) are the \( x \)-intercepts of the parabola \( y = x^2 - 7x + 10 \). What is the vertex?
6. Factor completely: \( 3x^2 - 9x - 12 \)

**FIRST STEP**

6. \( 0 = (x - 5)(x - 2) \)
5. \( y = x^2 - 7x + 10 \)
4. \( \frac{5 + 2}{2} = 3.5 \)
3. \( 0 = x^2 - 7x + 10 \)
2. \( \frac{x^2 - 7x - 10}{10} \)
1. \( x \)

\[ x = \frac{9 \pm \sqrt{(-9)^2 - 4(3)(-12)}}{2(3)} \]
Thinking ahead and analyzing problems

WHAT’S THE FIRST STEP?

Match each problem to the first step you would take to solve it:

**PROBLEM**

0. Factor: \( x^2 - 7x + 10 \)

1. Find the \( x \)-intercepts of \( y = x^2 - 7x + 10 \)

2. What are the roots of \( y = (x-5)(x-2) \)?

3. Solve for \( x \):
   \[ x^2 - 7x = -10 \]

4. \((5, 0)\) and \((2, 0)\) are the \( x \)-intercepts of the parabola \( y = x^2 - 7x + 10 \). What is the vertex?

5. Factor completely: \( 3x^2 - 9x - 12 \)

**FIRST STEP**

0. \( 0 = (x-5)(x-2) \)

1. \( y = x^2 - 7x + 10 \)

2. \( -x^2 - 7x = -10 \)
   \[+10 \quad +10\]

3. \( \frac{5+2}{2} = 3.5 \)

4. \( 0 = x^2 - 7x + 10 \)

5. \( x \)

6. \( x^2 \quad 10 \)

7. \( 3 \quad 3x^2 - 9x - 12 \)

8. \[ x = \frac{-9 \pm \sqrt{(-9)^2 - 4(3)(-12)}}{2(3)} \]
Thinking ahead and analyzing problems
WHAT'S THE FIRST STEP?

Match each problem to the first step you would take to solve it:

**PROBLEM**

Factor: \( x^2 - 7x + 10 \)

**FIRST STEP**

0 = \((x - 5)(x - 2)\)

\[ y = x^2 - 7x + 10 \]

Find the \(x\)-intercepts of \( y = x^2 - 7x + 10 \)

\[ x^2 - 7x = -10 \]
\[ +10 \quad +10 \]

\[ \frac{5 + 2}{2} = 3.5 \]

What are the roots of \( y = (x - 5)(x - 2) \)?

\[ 0 = x^2 - 7x + 10 \]

Solve for \( x \):

\[ x^2 - 7x = -10 \]

(5, 0) and (2, 0) are the \(x\)-intercepts of the parabola \( y = x^2 - 7x + 10 \). What is the vertex?

Factor completely: \( 3x^2 - 9x - 12 \)

\[ x = \frac{9 \pm \sqrt{(-9)^2 - 4(3)(-12)}}{2(3)} \]
Thinking ahead and analyzing problems
WHAT'S THE FIRST STEP?

Match each problem to the first step you would take to solve it:

<table>
<thead>
<tr>
<th>PROBLEM</th>
<th>FIRST STEP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Factor: $x^2 - 7x + 10$</td>
<td>$0 = (x - 5)(x - 2)$</td>
</tr>
<tr>
<td>Find the $x$-intercepts of $y = x^2 - 7x + 10$.</td>
<td>$y = x^2 - 7x + 10$</td>
</tr>
<tr>
<td>What are the roots of $y = (x - 5)(x - 2)$?</td>
<td>$x^2 - 7x = -10$</td>
</tr>
<tr>
<td></td>
<td>$+10 \quad +10$</td>
</tr>
<tr>
<td></td>
<td>$\frac{5 + 2}{2} = 3.5$</td>
</tr>
<tr>
<td>Solve for $x$: $x^2 - 7x = -10$.</td>
<td>$0 = x^2 - 7x + 10$</td>
</tr>
<tr>
<td>$(5, 0)$ and $(2, 0)$ are the $x$-intercepts of the parabola $y = x^2 - 7x + 10$. What is the vertex?</td>
<td></td>
</tr>
<tr>
<td>Factor completely: $3x^2 - 9x - 12$</td>
<td>$x = \frac{9 \pm \sqrt{(-9)^2 - 4(3)(-12)}}{2(3)}$</td>
</tr>
</tbody>
</table>
Thinking ahead and analyzing problems
WHAT’S THE FIRST STEP?

Match each problem to the first step you would take to solve it:

**PROBLEM**

Factor: \( x^2 - 7x + 10 \)

Find the \( x \)-intercepts of \( y = x^2 - 7x + 10 \).

What are the roots of \( y = (x - 5)(x - 2) \) ?

Solve for \( x \):
\( x^2 - 7x = -10 \)

\((5, 0)\) and \((2, 0)\) are the \( x \)-intercepts of the parabola \( y = x^2 - 7x + 10 \). What is the vertex?

Factor completely: \( 3x^2 - 9x - 12 \)

**FIRST STEP**

\( 0 = (x - 5)(x - 2) \)

\( y = x^2 - 7x + 10 \)

\( x^2 - 7x = -10 \)

\( +10 +10 \)

\( \frac{5 + 2}{2} = 3.5 \)

\( 0 = x^2 - 7x + 10 \)

\( x \)

\( x^2 \)

\( 10 \)

\( 3 \)

\( 3x^2 \)

\( -9x \)

\( -12 \)

\( -1 \ 0 \ 1 \ 2 \ 3 \ 4 \ 5 \ 6 \ 7 \ 8 \ 9 \ 10 \ 11 \)

\( x = \frac{9 \pm \sqrt{(-9)^2 - 4(3)(-12)}}{2(3)} \)
Thinking ahead and analyzing problems

WHAT’S THE FIRST STEP?

Match each problem to the first step you would take to solve it:

**PROBLEM**

Factor:  \( x^2 - 7x + 10 \)

**FIRST STEP**

\( 0 = (x - 5)(x - 2) \)

Find the \( x \)-intercepts of \( y = x^2 - 7x + 10 \)

\( x^2 - 7x = -10 \)

\( x^2 - 7x + 10 \)

\( \frac{5 + 2}{2} = 3.5 \)

\( 0 = x^2 - 7x + 10 \)

What are the roots of \( y = (x - 5)(x - 2) \)?

\( y = (x - 5)(x - 2) \)

Solve for \( x \):

\( x^2 - 7x = -10 \)

\( x \)

\( x \)

\( x^2 \)

\( 10 \)

(5, 0) and (2, 0) are the \( x \)-intercepts of the parabola \( y = x^2 - 7x + 10 \). What is the vertex?

Factor completely: \( 3x^2 - 9x - 12 \)

\( x = \frac{9 \pm \sqrt{(-9)^2 - 4(3)(-12)}}{2(3)} \)
Thinking ahead and analyzing problems
WHAT’S THE FIRST STEP?

Match each problem to the first step you would take to solve it:

**PROBLEM**

Factor:  
\[ x^2 - 7x + 10 \]

**FIRST STEP**

\[ 0 = (x - 5)(x - 2) \]

\[ y = x^2 - 7x + 10 \]

\[ x^2 - 7x = -10 \]

\[ +10 +10 \]

\[ \frac{5+2}{2} = 3.5 \]

\[ Q = x^2 - 7x + 10 \]

(5, 0) and (2, 0) are the \( x \)-intercepts of the parabola \( y = x^2 - 7x + 10 \). What is the vertex?

Solve for \( x \):

\[ x^2 - 7x = -10 \]

Factor completely:

\[ 3x^2 - 9x - 12 \]

\[ x = \frac{9 \pm \sqrt{(-9)^2 - 4(3)(-12)}}{2(3)} \]
Thinking ahead and analyzing problems
WHAT'S THE FIRST STEP?

Match each problem to the first step you would take to solve it:

**PROBLEM**

Factor: \( x^2 - 7x + 10 \)

Find the \( x \)-intercepts of \( y = x^2 - 7x + 10 \)

What are the roots of \( y = (x - 5)(x - 2) \)?

Solve for \( x \):
\( x^2 - 7x = -10 \)

(5, 0) and (2, 0) are the \( x \)-intercepts of the parabola \( y = x^2 - 7x + 10 \). What is the vertex?

Factor completely: \( 3x^2 - 9x - 12 \)

**FIRST STEP**

\( 0 = (x - 5)(x - 2) \)

\( y = x^2 - 7x + 10 \)

\( x^2 - 7x = -10 \)

\( +10 \quad +10 \)

\( \frac{5 + 2}{2} = 3.5 \)

\( 0 = x^2 - 7x + 10 \)

\( x \)

\( x \)

\( x^2 \)

\( -10 \)

\( 3 \)

\( 3x^2 \quad -9x \quad -12 \)

\( x = \frac{9 \pm \sqrt{(-9)^2 - 4(3)(-12)}}{2(3)} \)
Thinking ahead and analyzing problems
WHAT’S THE FIRST STEP?

Match each problem to the first step you would take to solve it:

PROBLEM

Factor: \( x^2 - 7x + 10 \)

Find the \( x \)-intercepts of \( y = x^2 - 7x + 10 \).

What are the roots of \( y = (x - 5)(x - 2) \)?

Solve for \( x \):
\( x^2 - 7x = -10 \)

\( 0 \) and \( 2, 0 \) are the \( x \)-intercepts of the parabola \( y = x^2 - 7x + 10 \). What is the vertex?

Factor completely: \( 3x^2 - 9x - 12 \)

FIRST STEP

\( 0 = (x - 5)(x - 2) \)

\( y = x^2 - 7x + 10 \)

\( x^2 - 7x = -10 \)

\( +10 +10 \)

\( \frac{5 + 2}{2} = 3.5 \)

\( 0 = x^2 - 7x + 10 \)

\( x \)

\( x^2 \)

\( 10 \)

\( \begin{array}{ccc}
3 & 3x^2 & -9x & -12 \\
\hline
-1 & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11
\end{array} \)

\( x = \frac{9 \pm \sqrt{(-9)^2 - 4(3)(-12)}}{2(3)} \)
Thinking ahead and analyzing problems
WHAT'S THE FIRST STEP?

Match each problem to the first step you would take to solve it:

**PROBLEM**

Factor: \( x^2 - 7x + 10 \)

**FIRST STEP**

0 = \((x - 5)(x - 2)\)

\( y = x^2 - 7x + 10 \)

Find the x-intercepts of \( y = x^2 - 7x + 10 \)

\( x^2 - 7x = -10 \)

\( +10 \)

\( +10 \)

\( \frac{5 + 2}{2} = 3.5 \)

\( 0 = x^2 - 7x + 10 \)

What are the roots of \( y = (x - 5)(x - 2) \)

Solve for \( x \):

\( x^2 - 7x = -10 \)

\( x \)

\( x \)

\( x^2 \)

\( 10 \)

(5, 0) and (2, 0) are the x-intercepts of the parabola \( y = x^2 - 7x + 10 \). What is the vertex?

Factor completely: \( 3x^2 - 9x - 12 \)

\( x = \frac{9 \pm \sqrt{(-9)^2 - 4(3)(-12)}}{2(3)} \)
Thinking ahead and analyzing problems
WHAT'S THE FIRST STEP?

Match each problem to the first step you would take to solve it:

**PROBLEM**

Factor: \( x^2 - 7x + 10 \)

Find the \( x \)-intercepts of \( y = x^2 - 7x + 10 \)

What are the roots of \( y = (x - 5)(x - 2) \)?

Solve for \( x \):
\[ x^2 - 7x = -10 \]

**FIRST STEP**

\[ 0 = (x - 5)(x - 2) \]

\[ y = x^2 - 7x + 10 \]

\[ x^2 - 7x = -10 \]
\[ +10 \quad +10 \]

\[ \frac{5 + 2}{2} = 3.5 \]

\[ 0 = x^2 - 7x + 10 \]

(5, 0) and (2, 0) are the \( x \)-intercepts of the parabola \( y = x^2 - 7x + 10 \). What is the vertex?

Factor completely: \( 3x^2 - 9x - 12 \)

\[ x = \frac{9 \pm \sqrt{(-9)^2 - 4(3)(-12)}}{2(3)} \]
Thinking ahead and analyzing problems
WHAT'S THE FIRST STEP?

Match each problem to the first step you would take to solve it:

**PROBLEM**

a) Factor: \( x^2 - 7x + 10 \)

**FIRST STEP**

0 = \((x - 5)(x - 2)\)

\( y = x^2 - 7x + 10 \)

b) Find the \( x \)-intercepts of \( y = x^2 - 7x + 10 \)

\[ x^2 - 7x = -10 \]

\[ +10 \quad +10 \]

\[ \frac{5 + 2}{2} = 3.5 \]

\( 0 = x^2 - 7x + 10 \)

c) What are the roots of \( y = (x - 5)(x - 2) \)?

d) Solve for \( x \):

\( x^2 - 7x = -10 \)

e) (5, 0) and (2, 0) are the \( x \)-intercepts of the parabola \( y = x^2 - 7x + 10 \). What is the vertex?

<table>
<thead>
<tr>
<th>( x )</th>
<th>( x^2 )</th>
<th>10</th>
</tr>
</thead>
</table>

3

| 3x^2 | -9x | -12 |

\( x = \frac{9 \pm \sqrt{(-9)^2 - 4(3)(-12)}}{2(3)} \)

Factor completely: \( 3x^2 - 9x - 12 \)
Thinking ahead and analyzing problems

What's the first step?

Match each problem to the first step you would take to solve it:

**Problem**

1. Factor: \( x^2 - 7x + 10 \)

   \[ 0 = (x - 5)(x - 2) \]

2. Find the x-intercepts of \( y = x^2 - 7x + 10 \)

   \[ x^2 - 7x = -10 \]
   \[ +10 \quad +10 \]

3. What are the roots of \( y = (x - 5)(x - 2) \)?

   \[ \frac{5 + 2}{2} = 3.5 \]

4. Solve for \( x \):

   \[ x^2 - 7x = -10 \]

5. \((5, 0)\) and \((2, 0)\) are the x-intercepts of the parabola \( y = x^2 - 7x + 10 \). What is the vertex?

6. Factor completely: \( 3x^2 - 9x - 12 \)

\[ x = \frac{9 \pm \sqrt{(-9)^2 - 4(3)(-12)}}{2(3)} \]
Thinking ahead and analyzing problems

WHAT'S THE FIRST STEP?

Match each problem to the first step you would take to solve it:

**PROBLEM**

Factor: \( x^2 - 7x + 10 \)

**FIRST STEP**

\[ 0 = (x - 5)(x - 2) \]
\[ y = x^2 - 7x + 10 \]

Find the \( x \)-intercepts of \( y = x^2 - 7x + 10 \)

\[ x^2 - 7x = -10 \]
\[ +10 \quad +10 \]

\[ \frac{5+2}{2} = 3.5 \]

What are the roots of \( y = (x - 5)(x - 2) \)?

\[ 0 = x^2 - 7x + 10 \]

Solve for \( x \):

\[ x^2 - 7x = -10 \]

(5, 0) and (2, 0) are the \( x \)-intercepts of the parabola \( y = x^2 - 7x + 10 \). What is the vertex?

\[ x \]
\[ \begin{array}{c|c}
  x^2 & 10 \\
\end{array} \]

Factor completely: \( 3x^2 - 9x - 12 \)

\[ x = \frac{9 \pm \sqrt{(-9)^2 - 4(3)(-12)}}{2(3)} \]
Thinking ahead and analyzing problems

WHAT’S THE FIRST STEP?

Match each problem to the first step you would take to solve it:

**PROBLEM**

Factor: \(x^2 - 7x + 10\)

Find the \(x\)-intercepts of \(y = x^2 - 7x + 10\)

What are the roots of \(y = (x - 5)(x - 2)\)?

Solve for \(x\):
\(x^2 - 7x = -10\)

(5, 0) and (2, 0) are the \(x\)-intercepts of the parabola \(y = x^2 - 7x + 10\). What is the vertex?

Factor completely: \(3x^2 - 9x - 12\)

**FIRST STEP**

0 = \((x - 5)(x - 2)\)

\(y = x^2 - 7x + 10\)

\(x^2 - 7x = -10\)

\(+10 +10\)

\(\frac{5+2}{2} = 3.5\)

\(0 = x^2 - 7x + 10\)

\(x\)

\(x^2\)

10

3

\(3x^2 - 9x - 12\)

\(-1 0 1 2 3 4 5 6 7 8 9 10 11\)

\(x = \frac{-9 + \sqrt{(-9)^2 - 4(3)(-12)}}{2(3)}\)
Thinking ahead and analyzing problems

WHAT'S THE FIRST STEP?

Match each problem to the first step you would take to solve it:

PROBLEM        FIRST STEP

Factor: \( x^2 - 7x + 10 \)

\[ 0 = (x - 5)(x - 2) \]

Find the \( x \)-intercepts of \( y = x^2 - 7x + 10 \)

\[ y = x^2 - 7x + 10 \]

\[ x^2 - 7x = -10 \]

\[ +10 \quad +10 \]

\[ \frac{5 + 2}{2} = 3.5 \]

What are the roots of \( y = (x - 5)(x - 2) \)?

\[ 0 = x^2 - 7x + 10 \]

Solve for \( x \):

\[ x^2 - 7x = -10 \]

\( (5, 0) \) and \( (2, 0) \) are the \( x \)-intercepts of the parabola \( y = x^2 - 7x + 10 \). What is the vertex?

Factor completely: \( 3x^2 - 9x - 12 \)

\[ x = \frac{-9 \pm \sqrt{(-9)^2 - 4(3)(-12)}}{2(3)} \]
Thinking ahead and analyzing problems
WHAT'S THE FIRST STEP?

Match each problem to the first step you would take to solve it:

**PROBLEM**

Factor: \( x^2 - 7x + 10 \)

**FIRST STEP**

\[ 0 = (x - 5)(x - 2) \]

\[ y = x^2 - 7x + 10 \]

Find the \( x \)-intercepts of \( y = x^2 - 7x + 10 \)

\[ x^2 - 7x = -10 \]

\[ +10 \quad +10 \]

\[ \frac{5+2}{2} = 3.5 \]

\[ = x^2 - 7x + 10 \]

What are the roots of \( y = (x - 5)(x - 2) \)?

Solve for \( x \):

\[ x^2 - 7x = -10 \]

\[ x \]

\[
\begin{array}{|c|c|}
\hline
x & x^2 \\
\hline
 & 10 \\
\hline
\end{array}
\]

\[ (5, 0) \) and \( (2, 0) \) are the \( x \)-intercepts of the parabola \( y = x^2 - 7x + 10 \). What is the vertex?

\[ (x - 5)(x - 2) \]

Factor completely: \( 3x^2 - 9x - 12 \)

\[ x = \frac{9 \pm \sqrt{(-9)^2 - 4(3)(-12)}}{2(3)} \]
Thinking ahead and analyzing problems

**WHAT'S THE FIRST STEP?**

Match each problem to the first step you would take to solve it:

**PROBLEM**

Factor: \( x^2 - 7x + 10 \)

**FIRST STEP**

\( 0 = (x - 5)(x - 2) \)

\( y = x^2 - 7x + 10 \)

Find the \( x \)-intercepts of \( y = x^2 - 7x + 10 \)

\( x^2 - 7x = -10 \)

\( +10 \quad +10 \)

\( \frac{5 + 2}{2} = 3.5 \)

What are the roots of \( y = (x - 5)(x - 2) \)?

\( 0 = x^2 - 7x + 10 \)

Solve for \( x \):

\( x^2 - 7x = -10 \)

\( x \)

\( x \left| \begin{array}{c} x^2 \\ 10 \end{array} \right. \)

\( (5, 0) \) and \( (2, 0) \) are the \( x \)-intercepts of the parabola \( y = x^2 - 7x + 10 \). What is the vertex?

\( 3 \left| \begin{array}{c} 3x^2 \\ -9x \\ -12 \end{array} \right. \)

Factor completely: \( 3x^2 - 9x - 12 \)

\( x = \frac{9 \pm \sqrt{(-9)^2 - 4(3)(-12)}}{2(3)} \)
Thinking ahead and analyzing problem solving steps:

**WHAT'S THE FIRST STEP?**

Match each problem to the first step you would take to solve it:

**PROBLEM**

Factor: \( x^2 - 7x + 10 \)

Find the \( x \)-intercepts of \( y = x^2 - 7x + 10 \).

What are the roots of \( y = (x - 5)(x - 2) \)?

Solve for \( x \):
\[ x^2 - 7x = -10 \]

**FIRST STEP**

\[ 0 = (x - 5)(x - 2) \]

\[ y = x^2 - 7x + 10 \]

\[ x^2 - 7x = -10 \]
\[ +10 \quad +10 \]

\[ \frac{5 + 2}{2} = 3.5 \]

\[ 0 = x^2 - 7x + 10 \]

\[ x \]

\[ x \]

\[ x^2 \]

\[ 10 \]

\[ 3 \]

\[ 3x^2 \quad -9x \quad -12 \]

(5, 0) and (2, 0) are the \( x \)-intercepts of the parabola \( y = x^2 - 7x + 10 \). What is the vertex?

Factor completely: \( 3x^2 - 9x - 12 \)

\[ x = \frac{9 \pm \sqrt{(-9)^2 - 4(3)(-12)}}{2(3)} \]
Thinking ahead and analyzing problems

WHAT’S THE FIRST STEP?

Match each problem to the first step you would take to solve it:

**Problem**

**First Step**

A) Factor: \( x^2 - 7x + 10 \)

\[ 0 = (x - 5)(x - 2) = C \]

\[ y = x^2 - 7x + 10 = B \]

B) Find the \( x \)-intercepts of \( y = x^2 - 7x + 10 \)

\[ \frac{x^2 - 7x}{10} = -10 \]

\[ +10 +10 = D \]

C) What are the roots of \( y = (x - 5)(x - 2) \)?

\[ \frac{5 + 2}{2} = 3.5 \]

D) Solve for \( x \):

\[ x^2 - 7x = -10 \]

\[ 0 = x^2 - 7x + 10 \]

E) \( (5, 0) \) and \( (2, 0) \) are the \( x \)-intercepts of the parabola \( y = x^2 - 7x + 10 \). What is the vertex?

\[ x \]

\[ x \]

\[ x^2 \]

\[ 10 \]

F) Factor completely: \( 3x^2 - 9x - 12 \)

\[ x = \frac{9 \pm \sqrt{(-9)^2 - 4(3)(-12)}}{2(3)} \]