Rectangular Tiles

Nicolas is making rectangular designs out of different tiles. He uses two different sized squares that will never line up exactly, no matter how many tiles are used. Nicolas labels the sides of the big square X and the sides of the small square Y.

1. What is the area of the large square? X^2

Nicolas uses one more tile that is rectangular in shape. The length of the rectangle is X, the same as a side of the large square. The width of the rectangle is Y, the same as a side of the small square.

2. What is the area of the rectangle? YX

Nicolas arranges the tiles in a rectangular configuration.

3. What are the lengths of sides of the rectangular configuration?

\[(x+y)\] by \[(x+y)\]

4. What is the area of the rectangular configuration? Explain

The area is $(x+y)^2$, because each of the sides are $(x+y)$, and the area of a square is the side length, squared.
Nicolas creates a different rectangular configuration out of the three tiles.

5. What are the side lengths of the rectangular configuration?

\[(2x + 2y)(x + 4y)\]

6. What is the area of the rectangular configuration?

\[2x^2 + 8y^2 + 10xy\]

7. Nicolas re-arranges all these tiles and makes another shaped rectangle with different side lengths than the rectangle above. Determine the side lengths of the new rectangular configuration? Show how you figured it out using algebra.

The side lengths are \((2x + 8y)\) by \((2x + 4y)\).

8. Draw the rectangular configuration you derived.
Rectangular Tiles

Nicolas is making rectangular designs out of different tiles. He uses two different sized squares that will never line up exactly, no matter how many tiles are used. Nicolas labels the sides of the big square \(X \) and the sides of the small square \(Y \).

1. What is the area of the large square? \(A = x^2 \).

Nicolas uses one more tile that is rectangular in shape. The length of the rectangle is \(X \), the same as a side of the large square. The width of the rectangle is \(Y \), the same as a side of the small square.

2. What is the area of the rectangle? \(A = xy \).

Nicolas arranges the tiles in a rectangular configuration.

3. What are the lengths of sides of the rectangular configuration?

4. What is the area of the rectangular configuration? Explain

\[2xy + x^2 + y^2 \text{, you add up the area of each individual rectangle to get the total area.} \]
Nicolas creates a different rectangular configuration out of the three tiles.

5. What are the side lengths of the rectangular configuration?
\((2x+2y)\) by \((x+4y)\)

6. What is the area of the rectangular configuration?
\(2(x+y)\) by \(x+4y\)

7. Nicolas re-arranges all these tiles and makes another shaped rectangle with different side lengths than the rectangle above. Determine the side lengths of the new rectangular configuration? Show how you figured it out using algebra.

8. Draw the rectangular configuration you derived.
Nicolas is making rectangular designs out of different tiles. He uses two different sized squares that will never line up exactly, no matter how many tiles are used. Nicolas labels the sides of the big square X and the sides of the small square Y.

1. What is the area of the large square? ________________.

Nicolas uses one more tile that is rectangular in shape. The length of the rectangle is X, the same as a side of the large square. The width of the rectangle is Y, the same as a side of the small square.

2. What is the area of the rectangle? ________________.

Nicolas arranges the tiles in a rectangular configuration.

3. What are the lengths of sides of the rectangular configuration?

$x + y$ by $x + y$

4. What is the area of the rectangular configuration? Explain

$xy + xy + y^2 + x^2 + (2x)$

$(x+y)(x+y)$
Nicolas creates a different rectangular configuration out of the three tiles.

5. What are the side lengths of the rectangular configuration?
 \[\begin{align*}
 x + 1y \\ 2x + 2y \\ x + 4y \\ 2x + 2y
 \end{align*} \]
 \[\begin{align*}
 2(x + y) \\ x + y \times y + y \times y \\ 2(x + y) \n \end{align*} \]

6. What is the area of the rectangular configuration?
 \[2x + 2y \times x + 4y \]

7. Nicolas re-arranges all these tiles and makes another shaped rectangle with different side lengths than the rectangle above. Determine the side lengths of the new rectangular configuration? Show how you figured it out using algebra.

8. Draw the rectangular configuration you derived.
Nicolas is making rectangular designs out of different tiles. He uses two different sized squares that will never line up exactly, no matter how many tiles are used. Nicolas labels the sides of the big square X and the sides of the small square Y.

1. What is the area of the large square? \(X^2\).

Nicolas uses one more tile that is rectangular in shape. The length of the rectangle is X, the same as a side of the large square. The width of the rectangle is Y, the same as a side of the small square.

2. What is the area of the rectangle? \(Y \cdot X\).

Nicolas arranges the tiles in a rectangular configuration.

3. What are the lengths of sides of the rectangular configuration?
 \(Y + X\) by \(X + Y\).

4. What is the area of the rectangular configuration? Explain

 The area of the rectangular configuration is \(X^2 + 2XY + Y^2\). This is the rectangular configuration because if you add up all the shapes in the big rectangle that's what you get.
Nicolas creates a different rectangular configuration out of the three tiles.

5. What are the side lengths of the rectangular configuration?
 \[2x + 2y\]
 \[4y + x\]

6. What is the area of the rectangular configuration?
 \[10xy + 8y^2 + 2x^2\]

7. Nicolas re-arranges all these tiles and makes another shaped rectangle with different side lengths than the rectangle above. Determine the side lengths of the new rectangular configuration? Show how you figured it out using algebra.

8. Draw the rectangular configuration you derived.
Nicolas is making rectangular designs out of different tiles. He uses two different sized squares that will never line up exactly, no matter how many tiles are used. Nicolas labels the sides of the big square \(\text{X} \) and the sides of the small square \(\text{Y} \).

1. What is the area of the large square? \(\text{The area of the square is } \text{X}^2 \).

Nicolas uses one more tile that is rectangular in shape. The length of the rectangle is \(\text{X} \), the same as a side of the large square. The width of the rectangle is \(\text{Y} \), the same as a side of the small square.

2. What is the area of the rectangle? \(\text{The area would be } \text{X} \times \text{Y} \).

Nicolas arranges the tiles in a rectangular configuration.

3. What are the lengths of sides of the rectangular configuration?

One side is \(\text{X} + \text{Y} \) by \(\text{X} \times \text{Y} \).

4. What is the area of the rectangular configuration? Explain

The area of this rectangular configuration would equal to

\((\text{X} \times \text{Y}) \times (\text{X} \times \text{Y})\).
Nicolas creates a different rectangular configuration out of the three tiles.

5. What are the side lengths of the rectangular configuration?

The length of the sides are \(ax + by \) and \(2x + 2y \).

6. What is the area of the rectangular configuration? The area of this shape would be \(2x^2 + 10xy + 8y^2 \).

7. Nicolas re-arranges all these tiles and makes another shaped rectangle with different side lengths than the rectangle above. Determine the side lengths of the new rectangular configuration? Show how you figured it out using algebra.

So if Nicolas were to arrange the shape, the side lengths would come out to \(2x + 2y \) by \(x + 4y \) or \(x + 4y \) by \(2x + 8y \).

8. Draw the rectangular configuration you derived.
Nicolas is making rectangular designs out of different tiles. He uses two different sized squares that will never line up exactly, no matter how many tiles are used. Nicolas labels the sides of the big square \(X\) and the sides of the small square \(Y\).

1. What is the area of the large square? \(X^2\).

Nicolas uses one more tile that is rectangular in shape. The length of the rectangle is \(X\), the same as a side of the large square. The width of the rectangle is \(Y\), the same as a side of the small square.

2. What is the area of the rectangle? \(XY\).

Nicolas arranges the tiles in a rectangular configuration.

3. What are the lengths of sides of the rectangular configuration? \(X\times Y\) by \(X+Y\).

4. What is the area of the rectangular configuration? Explain.

The area of the rectangular configuration is \((Y+X)^2\).
Nicolas creates a different rectangular configuration out of the three tiles.

5. What are the side lengths of the rectangular configuration?

\[y + 4 \times 5 \times 2 \times x \]

6. What is the area of the rectangular configuration?

\[(10x^2y) + (2x + 8y^2)\]

7. Nicolas re-arranges all these tiles and makes another shaped rectangle with different side lengths than the rectangle above. Determine the side lengths of the new rectangular configuration? Show how you figured it out using algebra.

8. Draw the rectangular configuration you derived.
Nicolas is making rectangular designs out of different tiles. He uses two different sized squares that will never line up exactly, no matter how many tiles are used. Nicolas labels the sides of the big square X and the sides of the small square Y.

1. What is the area of the large square? X^2

Nicolas uses one more tile that is rectangular in shape. The length of the rectangle is X, the same as a side of the large square. The width of the rectangle is Y, the same as a side of the small square.

2. What is the area of the rectangle? XY

Nicolas arranges the tiles in a rectangular configuration.

3. What are the lengths of sides of the rectangular configuration? $X + Y$ by $X + Y$

4. What is the area of the rectangular configuration? Explain

$$(x+y)(x+y)$$

$$(x+y)^2$$
Nicolas creates a different rectangular configuration out of the three tiles.

5. What are the side lengths of the rectangular configuration?

6. What is the area of the rectangular configuration?

7. Nicolas re-arranges all these tiles and makes another shaped rectangle with different side lengths than the rectangle above. Determine the side lengths of the new rectangular configuration? Show how you figured it out using algebra.

8. Draw the rectangular configuration you derived.
Rectangular Tiles

Nicolas is making rectangular designs out of different tiles. He uses two different sized squares that will never line up exactly, no matter how many tiles are used. Nicolas labels the sides of the big square X and the sides of the small square Y.

1. What is the area of the large square? ________________

Nicolas uses one more tile that is rectangular in shape. The length of the rectangle is X, the same as a side of the large square. The width of the rectangle is Y, the same as a side of the small square.

2. What is the area of the rectangle? ________________

Nicolas arranges the tiles in a rectangular configuration.

3. What are the lengths of sides of the rectangular configuration?
 X + Y by X + Y

4. What is the area of the rectangular configuration? Explain
 The area would be $x \cdot y \cdot (x + y)$ because the lengths are $x + y$ so you would multiply $x \cdot y$ by itself. This would give you the area of the square.
Nicolas creates a different rectangular configuration out of the three tiles.

5. What are the side lengths of the rectangular configuration?

\[2x + 4y, \ 2x + 2y \]

6. What is the area of the rectangular configuration?

\[(x + 4y)(2x + 2y) \]

\[2x^2 + 10xy + 8y^2 \]

7. Nicolas re-arranges all these tiles and makes another shaped rectangle with different side lengths than the rectangle above. Determine the side lengths of the new rectangular configuration? Show how you figured it out using algebra.

8. Draw the rectangular configuration you derived.
Nicolas is making rectangular designs out of different tiles. He uses two different sized squares that will never line up exactly, no matter how many tiles are used. Nicolas labels the sides of the big square X and the sides of the small square Y.

1. What is the area of the large square? X^2.

Nicolas uses one more tile that is rectangular in shape. The length of the rectangle is X, the same as a side of the large square. The width of the rectangle is Y, the same as a side of the small square.

2. What is the area of the rectangle? XY.

Nicolas arranges the tiles in a rectangular configuration.

3. What are the lengths of sides of the rectangular configuration?

 $X + Y$ by $X + Y$.

4. What is the area of the rectangular configuration? Explain.

 The area of the rectangular configuration is $X + Y - X + Y$ because when you find the area X and Y you will add them. After you add them then you will multiply the two side lengths.
Nicolas creates a different rectangular configuration out of the three tiles.

5. What are the side lengths of the rectangular configuration?
\[(x+x+y+y) \cdot (y+y+y+y+x)
\]
\[x+x+y+y
\]

6. What is the area of the rectangular configuration?
\[x+y \cdot y \cdot 2x + 2y
\]

7. Nicolas re-arranges all these tiles and makes another shaped rectangle with different side lengths than the rectangle above. Determine the side lengths of the new rectangular configuration? Show how you figured it out using algebra.

8. Draw the rectangular configuration you derived.
Rectangular Tiles

Nicolas is making rectangular designs out of different tiles. He uses two different sized squares that will never line up exactly, no matter how many tiles are used. Nicolas labels the sides of the big square X and the sides of the small square Y.

1. What is the area of the large square? $X \times X = X$

Nicolas uses one more tile that is rectangular in shape. The length of the rectangle is X, the same as a side of the large square. The width of the rectangle is Y, the same as a side of the small square.

2. What is the area of the rectangle? $Y \times X = xy$

Nicolas arranges the tiles in a rectangular configuration.

3. What are the lengths of sides of the rectangular configuration?

$$(x+y) \quad \text{by} \quad (x+y)$$

4. What is the area of the rectangular configuration? Explain

$$(x+y) \times (x+y) \text{ because } \text{since the side lengths equal } x+y \text{ you multiply } (x+y) \times (x+y)$$

Course I

Performance Test

Spring 2012

(c) Silicon Valley Mathematics Initiative 2011. To reproduce this document, permission must be granted by the SVMI info@svmimac.org

This material accompanies a videotaped lesson on Inside Mathematics (www.insidemathematics.org):

Multiplying Polynomials Using an Area Model: Public Lesson. Austin, Texas: the Charles A. Dana Center at The University of Texas at Austin.
Nicolas creates a different rectangular configuration out of the three tiles.

5. What are the side lengths of the rectangular configuration?

\[(2x + 2y)(x + 4y)\]

6. What is the area of the rectangular configuration?

\[2x^2 + 10xy + 8y^2\]

7. Nicolas re-arranges all these tiles and makes another shaped rectangle with different side lengths than the rectangle above. Determine the side lengths of the new rectangular configuration? Show how you figured it out using algebra.

8. Draw the rectangular configuration you derived.
Nicolas is making rectangular designs out of different tiles. He uses two different sized squares that will never line up exactly, no matter how many tiles are used. Nicolas labels the sides of the big square X and the sides of the small square Y.

1. What is the area of the large square?

Nicolas uses one more tile that is rectangular in shape. The length of the rectangle is X, the same as a side of the large square. The width of the rectangle is Y, the same as a side of the small square.

2. What is the area of the rectangle?

Nicolas arranges the tiles in a rectangular configuration.

3. What are the lengths of sides of the rectangular configuration?

4. What is the area of the rectangular configuration? Explain

Course 1
Performance Test
Spring 2012
(c) Silicon Valley Mathematics Initiative 2011. To reproduce this document, permission must be granted by the SVMI info@svmimac.org
Nicolás creates a different rectangular configuration out of the three tiles.

5. What are the side lengths of the rectangular configuration?

\[2x + 2y \quad x + 4y \]

6. What is the area of the rectangular configuration?

\[(2x + 2y)(x + 4y) \]

\[2x^2 + 10xy + 8y^2 \]

7. Nicolás re-arranges all these tiles and makes another shaped rectangle with different side lengths than the rectangle above. Determine the side lengths of the new rectangular configuration? Show how you figured it out using algebra.

The side lengths are \(2x + 6y \) and \(x + 4y \).

8. Draw the rectangular configuration you derived.
Nicolas is making rectangular designs out of different tiles. He uses two different sized squares that will never line up exactly, no matter how many tiles are used. Nicolas labels the sides of the big square \(X \) and the sides of the small square \(Y \).

1. What is the area of the large square? \(X^2 \).

Nicolas uses one more tile that is rectangular in shape. The length of the rectangle is \(X \), the same as a side of the large square. The width of the rectangle is \(Y \), the same as a side of the small square.

2. What is the area of the rectangle? \(XY \).

Nicolas arranges the tiles in a rectangular configuration.

3. What are the lengths of sides of the rectangular configuration? \(x+y \) by \(x+y \).

4. What is the area of the rectangular configuration? Explain

\[
(x+y)^2 = (x+y) \times (x+y) = x^2 + xy + xy + y^2 = x^2 + 2xy + y^2
\]

\[
The \text{ area } = \text{ orange}^2 + 2xy + \text{ purple}^2
\]
Nicolas creates a different rectangular configuration out of the three tiles.

5. What are the side lengths of the rectangular configuration?

\[y + x + y + y \text{ and } x + y + y + y \]

6. What is the area of the rectangular configuration?

\[2x^2 + 10xy + 8y^2 \]

7. Nicolas re-arranges all these tiles and makes another shaped rectangle with different side lengths than the rectangle above. Determine the side lengths of the new rectangular configuration? Show how you figured it out using algebra.

8. Draw the rectangular configuration you derived.
Rectangular Tiles

Nicolas is making rectangular designs out of different tiles. He uses two different sized squares that will never line up exactly, no matter how many tiles are used. Nicolas labels the sides of the big square X and the sides of the small square Y.

1. What is the area of the large square? \(X^2\).

Nicolas uses one more tile that is rectangular in shape. The length of the rectangle is X, the same as a side of the large square. The width of the rectangle is Y, the same as a side of the small square.

2. What is the area of the rectangle? \(XY\).

Nicolas arranges the tiles in a rectangular configuration.

3. What are the lengths of sides of the rectangular configuration? \((X+Y)\) by \((X+Y)\).

4. What is the area of the rectangular configuration? Explain

\[
(x+y) \cdot (x+y) = (x+y)^2
\]

\[
x^2 + 2xy + y^2
\]
Nicolas creates a different rectangular configuration out of the three tiles.

5. What are the side lengths of the rectangular configuration?

\[(2x^2 + 2y^2)(x + 4y)\]

6. What is the area of the rectangular configuration?

\[(2x^2 + 10xy + 8y^2)\]

7. Nicolas re-arranges all these tiles and makes another shaped rectangle with different side lengths than the rectangle above. Determine the side lengths of the new rectangular configuration? Show how you figured it out using algebra.

8. Draw the rectangular configuration you derived.
Nicolas is making rectangular designs out of different tiles. He uses two different sized squares that will never line up exactly, no matter how many tiles are used. Nicolas labels the sides of the big square X and the sides of the small square Y.

1. What is the area of the large square? \(\underline{y^2} \).

Nicolas uses one more tile that is rectangular in shape. The length of the rectangle is X, the same as a side of the large square. The width of the rectangle is Y, the same as a side of the small square.

2. What is the area of the rectangle? \(\underline{X \cdot Y} \).

Nicolas arranges the tiles in a rectangular configuration.

3. What are the lengths of sides of the rectangular configuration?
 \(\underline{X+Y} \) by \(\underline{X+Y} \).

4. What is the area of the rectangular configuration? Explain.
 The area of the rectangular configuration is \(x+y^2 \) because the side lengths are \(x+y \) and to find the area you have to multiply \(x+y \) by \(x+y \) which is \(x+y^2 \).
Nicolas creates a different rectangular configuration out of the three tiles.

5. What are the side lengths of the rectangular configuration?
 \[2x + 2y \text{ by } x + 4y\]

6. What is the area of the rectangular configuration?
 \[2x^2 + 10xy + 8y^2\]

7. Nicolas re-arranges all these tiles and makes another shaped rectangle with different side lengths than the rectangle above. Determine the side lengths of the new rectangular configuration? Show how you figured it out using algebra.
 The side lengths are \(2x + 8y\) by \(x + y\).

8. Draw the rectangular configuration you derived.
Rectangular Tiles

Nicolas is making rectangular designs out of different tiles. He uses two different sized squares that will never line up exactly, no matter how many tiles are used. Nicolas labels the sides of the big square \(X \) and the sides of the small square \(Y \).

1. What is the area of the large square? \(x^2 \)

Nicolas uses one more tile that is rectangular in shape. The length of the rectangle is \(X \), the same as a side of the large square. The width of the rectangle is \(Y \), the same as a side of the small square.

2. What is the area of the rectangle? \(x \cdot y \)

Nicolas arranges the tiles in a rectangular configuration.

3. What are the lengths of sides of the rectangular configuration?

\[x + y \text{ by } x + y \]

4. What is the area of the rectangular configuration? Explain.

The area of the rectangular is \(x + y^2 \) because both sides are \(x + y \) by \(x + y \) so you would have to multiple \(x + y \) by \(x + y \) and you would get \(x + y^2 \).
Nicolas creates a different rectangular configuration out of the three tiles.

5. What are the side lengths of the rectangular configuration?
 \[2x + 2y \text{ by } x + 4y\]

6. What is the area of the rectangular configuration?
 \[2x^2 + 10xy + 8y^2\]

7. Nicolas re-arranges all these tiles and makes another shaped rectangle with different side lengths than the rectangle above. Determine the side lengths of the new rectangular configuration? Show how you figured it out using algebra.
 The side lengths are \(2x + 8y\) by \(x + 4y\) and the area is \(2x^2 + 10xy + 8y^2\).

8. Draw the rectangular configuration you derived.
Rectangular Tiles

Nicolas is making rectangular designs out of different tiles. He uses two different sized squares that will never line up exactly, no matter how many tiles are used. Nicolas labels the sides of the big square X and the sides of the small square Y.

1. What is the area of the large square? ________________________.

Nicolas uses one more tile that is rectangular in shape. The length of the rectangle is X, the same as a side of the large square. The width of the rectangle is Y, the same as a side of the small square.

2. What is the area of the rectangle? ________________________.

Nicolas arranges the tiles in a rectangular configuration.

3. What are the lengths of sides of the rectangular configuration? ________________________ by ________________________

4. What is the area of the rectangular configuration? Explain

\[
\text{The area of the rectangular configuration is } (x+y)^2 \text{ or } (x+y)(x+y)
\]

Course 1
Performance Test
Spring 2012
(c) Silicon Valley Mathematics Initiative 2011. To reproduce this document, permission must be granted by the
SVMI info@svmimac.org

This material accompanies a videotaped lesson on Inside Mathematics (www.insidemathematics.org):
Multiplying Polynomials Using an Area Model. Public Lesson. Austin, Texas: the Charles A. Dana Center at The University of Texas at Austin.
Nicolas creates a different rectangular configuration out of the three tiles.

5. What are the side lengths of the rectangular configuration?

\[(x+4y) \times (2x+2y)\]

6. What is the area of the rectangular configuration?

\[2x^2 + 10xy + 8y^2\]

7. Nicolas re-arranges all these tiles and makes another shaped rectangle with different side lengths than the rectangle above. Determine the side lengths of the new rectangular configuration? Show how you figured it out using algebra.

8. Draw the rectangular configuration you derived.
Rectangular Tiles

Nicolas is making rectangular designs out of different tiles. He uses two different sized squares that will never line up exactly, no matter how many tiles are used. Nicolas labels the sides of the big square X and the sides of the small square Y.

1. What is the area of the large square? \(X^2\).

Nicolas uses one more tile that is rectangular in shape. The length of the rectangle is X, the same as a side of the large square. The width of the rectangle is Y, the same as a side of the small square.

2. What is the area of the rectangle? \(Xy^2\).

Nicolas arranges the tiles in a rectangular configuration.

3. What are the lengths of sides of the rectangular configuration?

\[\begin{array}{c}
X + y \\
Y \\
\end{array} \]

by

\[\begin{array}{c}
X + y \\
\end{array} \]

4. What is the area of the rectangular configuration? Explain.
Nicolas creates a different rectangular configuration out of the three tiles.

5. What are the side lengths of the rectangular configuration?

\[3x + 2y \times (x + 4y)\]

6. What is the area of the rectangular configuration?

\[10xy + 2x^2 + 8y^2\]

7. Nicolas re-arranges all these tiles and makes another shaped rectangle with different side lengths than the rectangle above. Determine the side lengths of the new rectangular configuration? Show how you figured it out using algebra.

8. Draw the rectangular configuration you derived.

Course 1
Performance Test
Spring 2012

(c) Silicon Valley Mathematics Initiative 2011. To reproduce this document, permission must be granted by the SVMI info@svmimac.org

This material accompanies a videotaped lesson on Inside Mathematics (www.insidemathematics.org):
Multiplying Polynomials Using an Area Model: Public Lesson. Austin, Texas: the Charles A. Dana Center at The University of Texas at Austin.