AMY BURKE: You're already doing the mathematics that's on here [inaudible]. Thank you.
STUDENT: So you see how I did it?
STUDENT: Wait, hold on.
STUDENT: You still putting them in order?
STUDENT: Yep.
STUDENT: Because once you're done, you're gonna click the wrench.
STUDENT: Just write it down.
STUDENT: Mm-hmm. [affirmative]
STUDENT: I was about to say like, "Oh yeah, I'm just going to write down--"
STUDENT: You're subtracting.
STUDENT: Yeah, I got it.
STUDENT: Wait, do you want to switch these two? Or you just want to leave it?
STUDENT: What do you mean?
STUDENT: Do you want to switch it? Or you're talking about adding this and the other one up there?

STUDENT: Yeah, but I think ... I think we got it.
STUDENT: Okay.
STUDENT: With the way it looks.
STUDENT: Okay, use your model to find the maximum volume of the box.
STUDENT: Mm.
STUDENT: I don't know how we're going to start with that.
STUDENT: I think it's just the -- the intersections with the purple--
STUDENT: Oh, we plug them in.
STUDENT: Yeah, with the purple line and then with the black line. Like, to see what intersects.
STUDENT: Yeah. So, take a look at some of these numbers, see what happens if we ...
STUDENT: One centimeter.

STUDENT: One centimeter?
STUDENT: Yeah.
STUDENT: One centimeter is going to maximize, um, the volume for--
STUDENT: What do you guys think ... I know why it maximizes it but I don't know how to put it into, like, mathematic terms.

STUDENT: I mean, I just put, "The smaller the cut, the more grid space left over to make the box."

STUDENT: No, the first one. Try the first one. Oh, wait, the first one, it can't be. It can't be the first one because it's negative so ...

STUDENT: 9.286.
STUDENT: So that -- it's -- Wait a minute. Okay, so that's the cut size, volume--
STUDENT: The x intercept is 9.286 , meaning -- what is the cut size? It's 0 centimeters?
STUDENT: ... so this is the x. [inaudible]
STUDENT: Yeah, but the equation would always be like that.
STUDENT: So, uh, do you have 5 yet?
STUDENT: Wait, wouldn't the equation always be like that? So why would we count it?
STUDENT: Hm?
STUDENT: This part? Why would we ... why would we get the x intercept from here if it's always like this when it's not what we're--

STUDENT: Just so you don't have to worry.
STUDENT: Yeah, you don't have to worry about this line because uh ...
STUDENT: It's negative.
STUDENT: Yeah, it's negative. On the x intercept. But if it's like right here, then that would be like the y intercept right there. Because it's on the y axis.

STUDENT: No, I'm asking because our data doesn't go to \ldots on an x axis, but the equation here, it will always hit an x axis, so why are we using it?

STUDENT: That is true. Let me see.
STUDENT: What is this question even asking?
STUDENT: Like, this is 963 but it can -- it can -- it can go more though, right?

STUDENT: If it keeps going ...
STUDENT: Yeah. [laughs]
STUDENT: So, it could be this, I think.
STUDENT: Can it go more? Can it go more though? Let me add another one.
STUDENT: Our data can't. Unless you added 10.
STUDENT: Yeah. If you add more data, it's kinda gonna follow the same line.
STUDENT: Ten. Can someone find 10 centimeters on here?
STUDENT: We don't have 10, it only goes up to 9 .
STUDENT: All right, so if we had a box of 10 , so \ldots if this is 19 , that's 25 so ... $1,2,3,4,5,6,7$, 8, 9, 10. So, 1, 2, 3, 4, 5, 6, 7, $8 \ldots$

STUDENT: That's what we did, right?
STUDENT: So this will be the cut. That -- but that's too large.
STUDENT: Oh, I -- wait, what's the value for the height? I think that would be for 6 , like, because 10 is too big.

STUDENT: Mm-hmm. [affirmative]
STUDENT: I don't know because then if you look at the graph, like, 9 is up here, 8 is here, but then 10 is like below it so that's negative. You would get negative volume.

STUDENT: So we don't have it.
STUDENT: So it's impossible.
STUDENT: Yeah. It only goes to 9 , that's why.
STUDENT: So, we don't have an x intercept.
STUDENT: We can fight that we don't have one. [laughs]
STUDENT: Unless we can use the negative? I know we can't but, like, is v-- well, it's volume, it's not telling you how many people ... it's not by people, it's by just, you know, a graph. So what if we can use negative, too?

AMY BURKE: Okay, wrap up your conversations.
STUDENT: Our data doesn't hit the x intercept, and I don't think we should use like--
STUDENT: The negative.

AMY BURKE: Hm. Why not?
STUDENT: Because, yes, this is, like, the cubic equation, but it's the equation from -- it's the cubic equation so no matter, like, whenever you input it, it's always going to hit the x--

STUDENT: Over at zero.
AMY BURKE: Hm.
STUDENT: Because it's not our data, I don't--
AMY BURKE: Mm-hmm. [affirmative] Okay.
STUDENT: It's just better to, like, see if our data is like ...
AMY BURKE: Is fitting the model.
STUDENT: Yeah.
AMY BURKE: Okay, okay. I hear you.

